If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7n^2-15n+2=0
a = 7; b = -15; c = +2;
Δ = b2-4ac
Δ = -152-4·7·2
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-13}{2*7}=\frac{2}{14} =1/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+13}{2*7}=\frac{28}{14} =2 $
| 3x+51=18 | | 6+5x=4x+11 | | X(2x+3)-5(2x+3)=0 | | (5x-3-2x)7=24 | | 1/2x+3x-176=0 | | 5=7x=47 | | (z)+(-2z+69)=2(z-6) | | 10r−3r=14 | | 15x+2x=64 | | 3x+7=12x-9 | | (2p-72)+(2p-50)=2p | | 1=-0.76x+26.04 | | -12-3c=-21 | | 12v-3v=27 | | 2(3x-4)-x=2x-20 | | -x+5=109 | | 15x+2=64 | | 3a+5=5a-47 | | 8(k+6)=-3(k-33) | | 68x+60x=512 | | 7/53=a/173 | | (10.50x-1.25x)=800 | | -2=-4+x/3 | | (-4p+67)+(3p-43)=3p-44 | | -2=-4+x3 | | 8x+5=12x+1 | | G(-3x)=4x+2 | | 3(y+2)+4=5(y-1)+1 | | 24h-6=210 | | 1/2(6x-4)=x-9 | | 25h-6=210 | | 24h-6=114 |